
DRAFT

Development of a Web-Based Real-Time
Distributed Reverberation Chamber for Live

Concert Applications*

AUSTIN FRANKLIN,1,2 RICHARD MITIC,1 DANIEL HEDIN,1,4 RIKARD LINDELL,3,1 AND HENRIK FRISK,2
(austin.franklin@mdu.se) (richard.mitic@mdu.se) (daniel.hedin@mdu.se) (rli@du.se) (henrik.frisk@kmh.se)

1School of Innovation, Design, and Technology, Mälardalen University, Västerås, Sweden
2Department of Composition, Conducting, and Music Theory, The Royal College of Music, Stockholm, Sweden

3Dalarna Audiovisual Academy (DAVA), Dalarna University, Falun, Sweden
4Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden

This paper documents the challenges encountered during the development of a mobile web-
based, real-time distributed reverberation chamber for a live concert setting. Initial efforts
focused on leveraging existing open source and commercial solutions, but these proved inad-
equate due to limitations in network compatibility, audio routing, and mobile device support.
WebRTC emerged as the most viable option, offering peer-to-peer communication and firewall
traversal capabilities. However, significant obstacles persisted, including network reliability,
audio hardware/software ecosystem limitations, and debugging complexity. The project high-
lights the fragmented nature of real-time audio streaming technologies and the need for more
transparent, reliable, and well-documented tools. Despite these challenges, we developed a
functional web application prototype using WebRTC, Web Audio API, and custom session
description protocol modifications, offering insights into the complexities of deploying real-
time audio systems over mobile networks. The paper concludes with reflections on speculative
approaches, such as decentralized audio routing and native app development, and calls for im-
proved documentation and standardized debugging tools to support future innovations.

0 INTRODUCTION

We began a project in February 2024 to create a simple
proof-of-concept: distributing a live reverberation chamber
as a stereo audio signal over a mobile network from a con-
cert hall to up to three (3) remote locations, and back to
the original site, where an audience would experience the
distributed performance alongside a live music event. The
end goal was to create a merged reality for the audience
and to explore their experience of the site-specific aural
qualities of the remote locations merged with those of the
concert hall. The prototype, named Auxtrument, was offi-
cially used in concert in November 2024 following a suc-
cessful demonstration at the 2024 International Conference
on Quality of Multimedia Experience (QoMEX’24) [1].

We anticipated that this project would be a relatively
straightforward endeavor, given the established use of
network-based tools for collaborative performance. We ini-
tially explored available open-source and commercial so-
lutions, but each proved inadequate for various reasons.

*Correspondence should be addressed to Austin franklin

Our efforts extended to experimenting with various pro-
tocols and network stacks, leading us to settle on Web
Real-Time Communications (WebRTC) as the most vi-
able option. WebRTC is marketed as a reliable, standard-
ized solution that appeared to address the core challenges
we faced: seamless real-time communication across de-
vices, browsers, and networks [2]. However, even after
adopting WebRTC, significant obstacles persisted, partic-
ularly in three key areas: 1) network compatibility and sta-
bility, 2) limitations within the audio hardware and soft-
ware ecosystem, and 3) debugging complexity and soft-
ware fragmentation. Many of these challenges remained
unresolved throughout the project, contradicting WebRTCs
reputation as a mature and reliable technology.

Boem et al. state that platforms based on WebRTC were
not originally designed for networked music experiences
but rather as ‘environments where a single data stream...
is broadcast to all users simultaneously’ [3]. Additionally,
they suggest that overcoming these limitations using cus-
tom servers and protocols, while possible, remains chal-
lenging. These issues raise critical questions about the reli-
ability, scalability, and practical limitations of these tools–

Submitted to J. Audio Eng. Soc., 2025 April 1



FRANKLIN ET AL. DRAFT

where things like frequent version updates and depreca-
tions can be difficult to track across multiple web stacks
and may render software components, or even entire appli-
cations, unusable. While the Auxtrument application pro-
vided a workable solution, the development and testing
process exposed significant gaps in documentation, unpre-
dictable ‘black box’ network behaviors, and difficulties in
achieving consistent performance across different devices
and environments.

Figure 1 shows our development. Each item represents
a tool, protocol, or software/hardware component laid out
in the order in which we experimented with it. Given the
aims and timeline of the project, we did not conduct a
proper state-of-the-art investigation into the full gamut of
mobile web audio streaming technologies. Given the repu-
tation of WebRTC as tried-and-tested software, and the sat-
uration of open-source and commercially available audio
streaming solutions, it was not reasonable for us to assume
that many of the problems we encountered were not al-
ready solved. Instead, we document our journey, highlight-
ing our motivations and processes, aiming to shed light on
the broader complexities of deploying real-time audio sys-
tems over mobile networks using exploratory and practice-
based methods.

1 METHODOLOGY

Exploratory research, as described by Stebbins, empha-
sizes open-ended investigation into uncharted territories,
allowing us to document and reflect on unexpected out-
comes during the process [4]. We also apply practice-based
research methods, in which creative practice serves as both
the process and outcome of research, generating new in-
sights through artistic exploration and critical reflection
[5, 6]. To distinguish our work as practice-based, we struc-
tured the methodology to align with the criteria proposed
by Scrivener [6]:

1. Define the objectives and research question(s).
2. Document the tools, setup, and actions used.
3. Analyse the results, noting the challenges.

Our research began with an artistic question: How can
the real-time distribution of site-specific acoustic reverber-
ation between a concert hall and multiple remote loca-
tions create a merged reality audience experience? How-
ever, as development progressed, we encountered a series
of challenges–including network reliability, limitations in
existing audio ecosystems, and debugging complexities–
and our focus necessarily shifted. In response, the re-
search question evolved: What are the practical and tech-
nical constraints of implementing a mobile, real-time, dis-
tributed reverberation system for live performance using
existing audio streaming technologies?

To investigate this question, we established three (3) ob-
jectives for achieving a high-fidelity user experience: 1) the
audio signals must be high-resolution to preserve the in-
herent quality of the transmitted sounds and accurately re-
lay spatial properties of the acoustic environments; 2) the

system should be easy to set up and use, and work over
different types of networks; and 3) to support use in any
location, it must be compatible with mobile devices. This
framing allowed us to critically assess available tools and
infrastructures as active conditions that shape the artistic
possibilities of the original research question. In writing
this paper, we set out to retroactively analyse and better
understand the causes behind several of these challenges.
We document our findings here in the belief that they con-
tribute to a broader understanding of how current tech-
nologies shape the possibilities–and limits–of mobile net-
worked music performance, while also illuminating the as-
sumptions embedded in their design and use.

2 SURVEY OF TECHNOLOGIES

In evaluating potential software solutions, we conducted
hands-on tests with a variety of audio applications, focus-
ing primarily on their networking capabilities and suitabil-
ity for real-time audio transmission of multiple channels
and audio routing capabilities across different platforms
and clients. Given the goal of integrating mobile devices
with the Auxtrument, we also explored applications with
mobile support. However, we did not test mixer apps on
mobile phones, as these typically require custom plug-
ins for advanced routing and signal processing–something
that mobile operating systems restrict. As we are primarily
composers, sound artists, and researchers, we explored so-
lutions well-known in our respective field(s), and the list of
software is by no means exhaustive. These findings guided
our decision to further explore alternative networking ap-
proaches for real-time audio streaming.

2.1 EXISTING AUDIO APPLICATIONS
Though our aim was to have Auxtrument work on mo-

bile networks, our initial tests involved using JackTrip [7]
and SonoBus [8] on MacBook laptops. We started with lap-
tops and Wi-Fi connections, anticipating this would be a
quick and practical first step in prototyping while allowing
us to evaluate the software. Although JackTrip’s user inter-
face was straightforward, it lacked the flexibility we needed
for audio routing between clients, sending the same au-
dio stream to all participants without the ability to control
volume or mute channels on the host side. It also did not
have an implementation for mobile phones. These limita-
tions made it unsuitable for our purposes. SonoBus, on the
other hand, addressed this issue by offering a mobile app
and multichannel input/output capabilities, allowing users
to specify channel destinations.

We attempted to connect using SonoBus over a mo-
bile hotspot using the Swedish Tele2 service provider, with
one laptop connected via eduroam. Eduroam is a global
network roaming service for students and employees in
academia [9]. Its authentication requirements are stan-
dardized across all networks, but individual providers can
and often add additional security features. The setup us-
ing SonoBus with Tele2 and eduroam proved unsuccess-
ful. In contrast, connections between two laptops granted

2 Submitted to J. Audio Eng. Soc., 2025 April



DRAFT Development of a Web-Based Real-Time Distributed Reverberation Chamber for Live Concert Applications

Fig. 1. The timeline of development for the Auxtrument.

eduroam certificates worked, and even certified mobile de-
vices connected to eduroam were able to stream audio via
the SonoBus iOS app without issues.

These initial findings led us to suspect that the secu-
rity features implemented at Mälardalen University and
The Royal College of Music in Stockholm, where eduroam
networks are accessible, were blocking peer-to-peer (P2P)
connections from external networks. A major obstacle was
SonoBus’s lack of options to specify ports or other network
settings, making it ineffective when dealing with firewall
restrictions. This posed a significant obstacle, as eduroam
was our primary testing network, and we had no reliable
way to determine in advance whether an external network
would permit a connection.

Digital Audio Workstations (DAWs) are powerful tools
that feature a wide range of audio plugins. Reaper [10] and
Logic [11] can host Apple’s AUNetSend and AUNetRe-
ceive plugins which are used to send audio between appli-
cations, hardware instruments, and more on a Mac [12].
However, these plugins use zero-configuration networking
through Bonjour [13] and multicast Domain Name System
(mDNS) service records to send audio over a Local Area
Network (LAN) only. Other well established live audio
tools such as Cycling ‘74 Max have networking capabil-
ities, limited primarily to control data via User Datagram
Protocol (UDP) and Open Sound Control (OSC) protocols
[14]. One workaround for audio streaming is to convert au-
dio vectors to jitter matrices and send the video stream over
the network. However, Max is not compatible with iOS.

Following the completion of the prototype, we broad-
ened our search of existing audio streaming applications.
We found the Virtual Rehearsal Room (VRR) and a
list of alternatives [15]. VRR is based on Audio over
OSC (AoO), the underlying protocol behind SonoBus,
using Pure Data as a plug-in for the Mozilla browser
[16]. These alternatives–including LoLa, NinJam, and
Soundjack–reflect a range of design priorities and techni-
cal trade-offs. LoLa, for example, requires dedicated hard-
ware and a stable one (1) Gigabits Per Second (Gbps) con-

nection, typically only available on academic networks.
While Internet Service Providers (ISPs) advertise such
speeds, real-world performance varies. NinJam, bundled
with Reaper, addresses latency by aligning performers to
musical measures, sometimes increasing latency by one or
more bars. Soundjack uses P2P networking but requires
UDP port 50050 to be forwarded–an issue on networks like
eduroam, where port forwarding is often blocked for secu-
rity reasons.

What became clear through this review was that no sin-
gle tool fit our needs perfectly. SonoBus remains the clos-
est to meeting our criteria due to its cross-platform support
and intuitive interface. Yet the inability to manually con-
figure network ports or tunnel through more restrictive fire-
walls ultimately limited its utility in real-world settings. As
a final thought, the process of evaluating these alternatives
confirmed that while the existing ecosystem of remote au-
dio tools is mature in some respects, it remains fragmented,
with little attention paid to mobile-first, multi-endpoint col-
laboration under institutional network conditions.

2.2 EXISTING WEB TECHNOLOGIES
To create a realistic reverberation chamber effect, min-

imizing network latency was essential. Although we did
not set a strict target, our goal was to reduce the delay be-
low the threshold of the precedence effect of approximately
40ms for complex sounds such as speech and music [17].
Beyond this threshold, the delayed sound is perceived as
a distinct echo rather than a single auditory event. Given
this requirement, it was determined that P2P connections
would be the most suitable approach.

We explored existing technologies and protocols. For in-
stance, we made an implementation that relies on Web-
Sockets through Node.js by setting up a remote server
and having clients connect to a central computer. Our as-
sumption was that WebSockets, being a well-established
technology, would provide a reliable foundation for audio
transmission. However, we quickly encountered a signifi-

Submitted to J. Audio Eng. Soc., 2025 April 3



FRANKLIN ET AL. DRAFT

cant challenge–WebSockets by themselves were unable to
reliably connect two devices on disparate networks. Given
these limitations, we eventually decided that building a mo-
bile web app using WebRTC would be the most feasible
approach due to its native P2P and firewall traversal capa-
bilities and broad browser support.

WebRTC relies on the clients negotiating a suitable way
to connect to each other. The process of negotiation, known
as signaling, takes place outside the WebRTC framework,
e.g., using a custom built signaling server based on Web-
Sockets. The first step exchanges session descriptions in
the form of a Session Description Protocol (SDP) offer that
describes the type of connection (if it is video or audio), the
codecs and codec parameters to be used, and more. The
second step of signaling uses Interactive Connectivity Es-
tablishment (ICE) to establish a way for the peers to stream
to each other.

ICE looks for the lowest latency connection by trying
to 1) establish a P2P connection using a Session Traver-
sal Utilities for NAT (STUN) or Traversal Using Relays
around NAT (TURN) server, 2) establish a direct TCP con-
nection via the HTTP and HTTPS ports, and 3) falling
back on an indirect connection via a TURN server. This
means that even in cases where Network Address Trans-
lation (NAT) prohibits a P2P connection using STUN, the
TURN relay should act as a failsafe that permits the con-
nection, albeit with increased overall latency, provided that
it is explicitly configured to do so.

3 THE AUXTRUMENT AND THE NETWORK

From an implementation perspective, the final version
of the Auxtrument is a web application based on WebRTC
that is deployed using Express.js [18] running on top of
Node.js [19]. The Peer.js library is used for establishing
the connection [20]. Peer.js is a free library and service
intended to provide easy-to-use WebRTC connections. On
the client side it provides a library that wraps WebRTC, al-
lowing clients to establish connections using only an ID.
This requires the use of a Peer.js signaling server that uses
the IDs to automate the connection process. Peer.js pro-
vides its own signaling servers and the source code for the
server to enable projects to host their own applications.

This stack helps streamline and simplify the number
of actions a user must perform to establish a connection.
Users simply navigate to the Uniform Resource Locator
(URL) and select whether they are the central hub or lo-
cation peers. The signaling and P2P initiation is automat-
ically handled in the background, and the audio input and
output devices are specified by each client in the user inter-
face prior to establishing a connection. The concert-ready
version of the Auxtrument is limited to three remote clients
and one central hub but nothing prevents further expansion
into more complex configurations.

3.1 NETWORK CHALLENGES
Due to the limited number of IPv4 addresses, most ISPs

rely on some form of NAT or Carrier-Grade Network Ad-

dress Translators (CGNAT). This allows multiple clients to
share the same external Internet Protocol (IP) address, thus
conserving the address space. NAT and CGNAT typically
prevent connections to clients to be initiatiated from the
outside, which causes problems if two peers situated be-
hind NAT or CGNAT want to establish P2P connections.
Similar situations may occur when firewalls are used to
protect local networks. The first priority of the ICE pro-
tocol is to find ways to establish P2P connections in the
presence of NAT, CGNAT or firewalls, e.g., using ‘hole
punching.’ Somewhat simplified, hole punching is based
on indirectly manipulating the state of the firewall or NAT
by initiating communication from the inside of a network
in such a way that the initiator is exposed on the external
network [21].

Experiments with the Auxtrument show the complexity
of the network setup and identifying and mediating issues.
Tests with Tele2 and Tre for example, some of Sweden’s
largest mobile service providers, did not work with our
WebRTC implementation whatsoever using STUN. Be-
cause of the fact that most of our testing occurred be-
tween eduroam networks, where we are based, and other
ISPs, it was not immediately apparent that the mobile net-
work itself, or combination of ISP and eduroam networks
together, was the problem over firewall restrictions when
used with laptops.

This led to tests with other mobile network providers
in Sweden, primarily by visiting service provider stores,
setting up some basic equipment, and running the Auxtru-
ment using borrowed Subscriber Identity Modules (SIMs).
Based on these tests, we discovered that Telia worked per-
fectly in all the situations where other providers previously
had not. The frustration with mobile network providers is
that there is no way to know exactly why Telia works and
the others do not, in terms of how specifically each CGNAT
is configured, and what penetration methods might be suc-
cessful prior to experimentation. To complicate the matter
further, we were able to get a connection working behind
CGNAT, but via a fibre-based ISP.

We experimented with exploring the networks using
traceroute, but the results were inconclusive. While there
are other tools for mapping the architecture of a network,
we did not pursue them due to the complexity of the setup,
in particular the interaction between the IP layer and the
mobile network that, among other things, allows for roam-
ing between carriers. As Kanaris and Pouwelse note, there
are many different network configurations and NAT archi-
tectures that make penetration techniques difficult. How-
ever, they document an issue where both peers behind the
same CGNAT cannot establish a connection using STUN
since the server is outside of the intranet and only sees the
‘middle’ network [22]. This explains, at least in part, some
of our issues when testing with Tele2 mobile networks.

3.2 WEBRTC MEDIA STREAM
WebRTC presented challenges with minimising latency

using its adaptive jitter buffer. The buffer automatically
resizes when latency exceeds its capacity and does not

4 Submitted to J. Audio Eng. Soc., 2025 April



DRAFT Development of a Web-Based Real-Time Distributed Reverberation Chamber for Live Concert Applications

reset unless the web page is refreshed. Setting the jitter
buffer is ‘best effort,’ meaning that WebRTC may not honor
the request and prioritize its own settings in cases where
there are network interruptions. There are other not-so-
well known methods for minimising latency, such as im-
plementing a playout delay–a Real-time Transport Protocol
(RTP) header extension, which provides the sender’s intent
to the receiver on how quickly a frame needs to be rendered
[23]. Community forums and bug reports show mixed re-
views with playout delay implementation, with some sug-
gesting the feature does not work with Chrome’s Javascript
API layer at all. This mirrors our experience using this fea-
ture in Chrome.

3.3 WEBRTC DATA CHANNEL
We explored using the WebRTC Data Channel to over-

come latency issues and have explicit control over the jitter
buffer. By sending segments of audio data as bytes via this
channel, we hoped to piggyback on its low latency perfor-
mance and then create an audio channel for playback on
the other end. Initially, the latency was acceptable for our
use case, between 10-40ms, however, it would unexpect-
edly increase to around 20-30 seconds for brief moments
of time. When this occurred the audio was significantly af-
fected, with clear indications of data loss. We were initially
astonished: Where do those packets live for such a long
time? While we have been unable to reproduce the issue
in a controlled manner, it seems to be easier to trigger on
unreliable networks (i.e., mobile networks).

We hypothesise that it is a combination of network Qual-
ity of Service (QoS) and WebRTCs use of Stream Con-
trol Transmission (SCTP) for reliable data channel messag-
ing [24]. Specifically, when a transmitted message exceeds
the Maximum Transmission Unit (MTU) of the network,
it is segmented into smaller portions. Variable latency in
each segment can be due to scheduling messages in the
network stack, congestion, or differing processing times
between network nodes, and this latency can easily com-
pound. When packets arrive out of order, additional buffer-
ing, reordering mechanisms, or even retransmission may
be needed. Even though the channel can be configured to
be ‘unordered’ to reduce latency, lost packages still need
to be retransmitted to preserve audio quality. It could be
the case that high network congestion causes frequent re-
transmission, further exacerbating the congestion and data
loss. We assume QoS plays a part in this process since We-
bRTCs media stream does not suffer from the same issue.
Furthermore, there are unknowns about the ways in which
mobile network topology contributes to latency, given that
some tests with 5G encountered greater variance, while 4G
seemed to provide more reliable results.

Moreover, when implementing our own jitter buffer us-
ing the data channel, we discovered an unexpected issue
where playback sounded like white noise rather than the
intended audio stream, even when testing using a LAN.
The issue occurred when the buffer size grew too large,
with the exact threshold depending on the mobile device’s
browser running the node client. Strangely, setting the

buffer past this threshold caused the client to misinterpret
the type of data, specified as frames of 128 bytes, from an
ArrayBuffer to an UInt8Array, causing the audio
data to be in the range of 0 to 255 instead of the intended
normalised range of -1 to 1. The WebRTC data channel ef-
fectively supports dynamic typing through Javascript, but
it’s not explicitly defined by the API itself. Instead, the data
type is dynamically determined at runtime based on what
is passed to send(), and the receiver must handle differ-
ent types accordingly. We have no explanation as to why
this process fails in our own implementation using the data
channel.

4 THE AUXTRUMENT AND AUDIO

The Auxtrument uses the open-source and royalty free
Opus codec that is preferred by WebRTC [25]. It oper-
ates with a sampling rate of 48 kHz to match that of most
web browsers to prevent resampling at any stage in the
transmission process, along with variable bitrate encoding.
The recording for both the locations and the central hub
is handled using the web browsers’ getUserMedia()
javascript function of the MediaDevices API, which returns
an audio stream from the selected audio input device.

At the same time, audio playback requires the Web Au-
dio API. Once the audio has been received from all lo-
cations, the hub parses the channels from the streams of
each location and merges them into a single multi-channel
stream. For instance, three (3) locations with three (3) inter-
leaved stereo streams are merged into a single stream with
six (6) channels that is sent to a multi-channel audio de-
vice and controlled via a mixer (Figure 2). This process is
performed using the splitter and merger web audio graph
nodes [26]. The splitter transforms the interleaved stereo
signals into separate mono signals, and then the merger
node mixes all (6) mono signals for the left and right chan-
nels, respectively.

4.1 WEBRTC SDP
When setting up the aforementioned WebRTC connec-

tion, the protocol requires stream configuration informa-
tion. SDP munging is required to configure a media stream
to contain more than the default single channel [27]. The
SDP is the standard that describes media communication
sessions, and it contains the codec parameters, source ad-
dress, and timing information of audio and video streams.
For the Auxtrument, streaming stereo audio–to be diffused
in the concert hall–was chosen as the minimum require-
ment for achieving an immersive experience, while remain-
ing lightweight enough to minimize hardware demands and
avoid potential bandwidth issues. Using WebRTC, stream-
ing a stereo signal requires forcing the boolean stereo=1
flag to the description. However, the WebRTC documen-
tation makes no mention of editing the SDP or specify-
ing stereo transmission, and in hindsight, this makes sense
given that most WebRTC applications use mono audio
streaming for video conferencing.

Submitted to J. Audio Eng. Soc., 2025 April 5



FRANKLIN ET AL. DRAFT

Fig. 2. WebRTC and Web Audio API between Auxtrument peers.

In addition to this, WebRTCs getUserMedia() func-
tion includes a channelCount constraint that allows
users to specify the number of channels in the local stream.
This does not, however, determine the number of channels
you are expecting to send and be received by another peer
over the network. That property must be munged in the
SDP file negotiated between two peers during signaling.
Without this, a stereo signal is taken from one peer and a
mono signal is received by the other. For multichannel au-
dio specifically, the required codec name is multiopus
as opposed to opus, which also must be munged in the
SDP offer along with the channel configurations. However,
WebRTC does not mention the codec, and in both cases,
the necessary solutions were found in community forums.
Listing 1 shows a function that edits the SDP file for mul-
tichannel streaming.

1 function modifySDPForStereo(sdp) {
2 const sdpLines = sdp.split(’\r\n’);
3 for (let i = 0; i < sdpLines.length; i++) {
4 if (sdpLines[i].startsWith(’a=fmtp:111’)) {
5 sdpLines[i] += ’channel_mapping=0,1,2,3,4,5’;
6 num_streams=4;coupled_streams=2;
7 maxaveragebitrate=510000’;
8 }
9 if (sdpLines[i].startsWith(’a=rtpmap:111’)) {

10 sdpLines[i] = ’a=rtpmap:111 multiopus/48000/6’;
11 }
12 }
13 const modifiedSDP = sdpLines.join(’\n’);
14 return modifiedSDP;
15 }

Listing 1. SDP munging function

4.2 AUDIO ECOSYSTEM LIMITATIONS
To ensure ease of use and portability, we prioritized

mobile device support–enabling connections from remote
locations with minimal hardware while maintaining reli-
able connections. We focused on iOS development pri-
marily because most of our team uses Apple devices. Ap-
ple’s restrictive approach to external microphone com-
patibility is part of its broader sandboxing and security
philosophy, which prioritizes system integrity over user

flexibility. While this makes iOS more secure and sta-
ble, it also creates significant challenges for real-time au-
dio applications–especially those relying on WebRTC and
web-based tools rather than native apps [28]. Unlike ma-
cOS, where WebRTC freely accesses external audio de-
vices via standard APIs, iOS restricts audio input at the sys-
tem level. Even when a device is selected using WebRTCs
input selection function, iOS does not always honor the se-
lection. This was the case with a Zoom ZMS-44 2-channel
audio interface, which promised iOS compatibility.

After testing other devices, the RØDE NTG mobile
boom mic proved compatible with Google Chrome and
WebRTC on iOS. However, iOS treated the external mic as
an additional input rather than a full replacement. The in-
ternal mic did not turn off completely and continued pick-
ing up audio, albeit at a lower volume. The streams for
both inputs were merged into a single channel and sent
over the network, leading to an undesirable mix of sources.
In the end, our investigation ended here–mainly due to
time constraints–however, the RØDE NTG proved other-
wise successful given our project goals. The RØDE NTG
also features a 3.5mm line output that was used with an
OB-1 speaker by Teenage Engineering for playback.

5 DEBUGGING

While developing the Auxtrument in line with our ob-
jectives, we encountered numerous challenges and gained
valuable insights. However, debugging proved particularly
difficult due to the complex and fragmented nature of the
technology stack, which involved multiple layers and com-
ponents. Furthermore, the lack of comprehensive and accu-
rate documentation often hindered our progress, forcing us
to rely on community forums and other unofficial sources.

5.1 DEBUGGING COMPLEXITY
Debugging presented a huge challenge throughout the

project, particularly because of the ‘black box’ nature
of these technologies and the fact that hearing no sound
from another location during testing could represent one

6 Submitted to J. Audio Eng. Soc., 2025 April



DRAFT Development of a Web-Based Real-Time Distributed Reverberation Chamber for Live Concert Applications

of dozens of potential issues, many of which are ex-
tremely time consuming, if not impossible to find. Prob-
lems could lie with audio hardware, operating system,
browser type and version, WebRTC, Web Audio API, our
own implementation, a library, or mobile network(s). In
most browsers, for example, WebRTC and Web Audio API
work together seamlessly, whereas in latest version of Sa-
fari at the time (17.5.1), multi-channel through the Web
Audio API became non-functional after updating.

Furthermore, a known regression in Safari 17.5.1 causes
the AudioContext() to stop after the browser loses
and then regains focus (e.g., minimizing the window) [29].
Even when interacting with UI elements designed to pro-
duce sound, the audio remains unresponsive for the rest of
the session. This is indicative of broader challenges with
WebKit, the engine underlying Safari, which has histori-
cally lagged in implementing certain web standards. For
instance, the AudioWorklet interface, crucial for low-
level audio processing, was not implemented in WebKit
until 2021, hindering developers relying on this feature
for enhanced audio capabilities [30]. These inconsistencies
across the Apple ecosystem add complexity to debugging,
as behaviors can vary significantly between WebKit and
other browser engines and devices, sometimes necessitat-
ing browser-specific workarounds.

Another major challenge is logging and monitoring in
a real-time WebRTC environment. Traditional in-browser
debugging tools often fall short because WebRTC oper-
ates asynchronously and across multiple layers, mean-
ing errors can occur at any stage–signaling, negotiation,
network transport, or playback–without clear visibil-
ity into where the failure originates. While tools like
webrtc-internals (Chrome) and about:webrtc
(Firefox) can provide useful insights, they require detailed
expertise to interpret, and they don’t always reveal the full
picture when dealing with custom audio routing or multi-
channel implementations. They also do not communicate
any information about how, if at all, WebRTC and Web
Audio API are collaborating.

The abstraction process used by Peer.js makes establish-
ing connections across devices and networks easier, but
more difficult to control and debug. For instance, there
are bug reports that express difficulty connecting certain
mobile providers. There are even reports with Peer.js and
iOS version compatibility, suggesting it is not guaranteed
to work across all variations reliably. Furthermore, Peer.js
includes its own list of STUN and TURN servers to use
as defaults. In many reports, mirrored by our own experi-
ence, the Peer.js TURN relay tries repeatedly to negotiate
between candidates before eventually failing to establish
a connection. As a post concert test, we set up our own
TURN relay through Metered, a WebRTC TURN relay ser-
vice, and noticed a bug in the Auxtrument code that was
not properly overwriting the default Peer.js servers with our
own server specifications. After fixing the issue, we were
able to establish a connection using our TURN relay on
both eduroam and Tele2 networks. This points to an issue
with the TURN relays provided by Peer.js.

One reason we did not suspect Peer.js sooner was be-
cause it does not log anything, and we had no reason to ex-
pect that our servers were not even being considered. When
we began development, we explicitly decided against us-
ing a TURN relay due to its added latency (an average
roundtrip time of approximately 115 ms based on some of
our tests). It’s possible that considering this option sooner,
rather than for trying to debug network issues after the fact,
might have helped us discover the problem with Peer.js ear-
lier in the development process. In any case, this says noth-
ing about the use of STUN with different network architec-
tures and NATs, which still presents significant challenges.

5.2 DOCUMENTATION
There were many moments throughout development

where a property, method, or constraint was not docu-
mented through the WebRTCs documentation repository.
Instead, these were found elsewhere on community fo-
rums such as Stack Overflow, CodePen examples, and
Reddit threads. A recent Editor’s Draft from World Wide
Web Consortium (W3C) that was published on the 13th of
February 2025 includes the most complete overview of the
more esoteric capabilities of WebRTC that we have been
able to find [31].

Although this is an incomplete draft as of the day of this
publication, many unknowns about WebRTC features are
revealed, although the information is largely inaccurate.
For example, the channelCount constraint is initially
listed as a boolean, but another place on the same Web
page correctly lists it as unsigned long. This is the case
with all constraints WebRTC describes in this draft. The
latest published version from 8th of October 2024 makes
one mention of the channelCount constraint, but does
not define it or reference how it should be used and with
what data type.

6 OTHER APPROACHES

There are several speculative approaches and improve-
ments that could have been considered to answer our re-
search question and address the challenges presented in
this paper. While WebRTC provided a workable solution,
the unpredictability of its implementation and distribution,
particularly for a live concert setting, highlights the need
for more user friendly and reliable solutions.

6.1 DECENTRALIZED AUDIO ROUTING
Instead of relying on a single WebRTC-based applica-

tion to handle all connections, we could have used sepa-
rate devices for each pair of connections. This approach
would have simplified the network topology and reduced
the complexity of debugging, as each connection would be
independent. However, this would have required more de-
vices. Although we chose to develop a web-based appli-
cation for its cross-platform compatibility, we could have
considered developing a native app for iOS and Android.
A native app would have provided better access to device
hardware and operating system features, custom handling

Submitted to J. Audio Eng. Soc., 2025 April 7



FRANKLIN ET AL. DRAFT

of jitter buffers, and compensation for packet losses, thus
potentially overcoming some of the limitations presented
using web-based solutions.

6.2 VIRTUAL PRIVATE NETWORKS
Routing all connections over a Virtual Private Network

(VPN) could have simplified peer discovery since each de-
vice can be assigned a hostname or static virtual IP address.
We decided against this option in practice simply because
the WebRTC application was already developed. We also
posited that the underlying network routes of a VPN would
effectively be the same as those negotiated by WebRTCs
ICE protocol and therefore the VPN would serve no ad-
ditional benefit. However, the VPNs data encryption may
slightly increase overall transmission latency.

As a retrospective test, we attempted to recreate the
Auxtrument between two SonoBus clients connected to
a VPN–a laptop connected to a corporate WiFi network,
and an iPhone connected to the Tre mobile network. Using
SonoBus’ connect to group functionality the laptop con-
nected successfully. When the phone attempted to connect,
an error message appeared and no audio was transferred.
Using SonoBus’ experimental direct connection function-
ality using the IPs provided by the VPN, we were only
able to send audio in one direction–from phone to laptop.
There was no further debugging information available from
SonoBus so it is unclear exactly where the error occurred.

6.3 ALTERNATIVE PROTOCOLS
As a potential alternative to WebRTC, we experimented

with creating a transmission protocol similar to Reliable
(Unreliable) Streaming Protocol (RUSH) [32], which is
based on QUIC [33] and allows fine-grain control over de-
livery guarantees and avoidance of congestion. However,
it was determined that implementing an entire streaming
protocol from scratch was not feasible in the time avail-
able. One of the marketed benefits of WebRTC was that
the implementation already exists in browsers, and for a
networked music performance we were inclined to favour
tried-and-tested software over an experimental option.

7 OUR VISION

The grand vision of the research project (IRESAP) is
the ambition to have a musical performance in a remote
locations where the performers and the audience are inter-
connected through a mobile interface. This interface will
allow access not only to the sound of the performance
but to the data involved in producing the performance,
thereby blurring the performer-audience boundary. In addi-
tion, we also envision participants coming and going from
the performance ecosystem in real-time. Currently, Inter-
net of Things (IoT) technologies are the only viable option
for such a system, placing great importance on established
technologies such as WebRTC. This vision could, for ex-
ample, be an merged reality concert where the functionality
of the Auxtrument allows any user to filter sound through
the physical environment of another user at any time. For

this–and other experimental network music performance
applications–to succeed, the technologies discussed in this
paper need to be reliable, robust, and scalable.

8 CONCLUSION

One of the primary challenges we faced was the lack
of comprehensive documentation for WebRTC, especially
multi-channel audio and SDP munging. In the future, we
would expect more detailed and accessible documentation
for developers. In addition, we hope for the development
of standardized debugging tools that provide better visibil-
ity into the interaction between WebRTC and Web Audio
API in the browser. WebRTC has been available since 2011
and stable since 2018. Nevertheless, we suggest that web
browser developers increase their efforts to make their im-
plementations compliant with W3C standards. Finally, ad-
dressing the issues with mobile networks regarding trans-
parency and compatibility are paramount, particularly with
STUN server signaling, but also wishful thinking. Perhaps
until the transition to IPv6 address space is complete, or un-
til NAT vendors become more aware of the requirements of
significant P2P applications, many of these mobile network
challenges will remain unsolved.

Our journey creating a web-based, real-time distributed
reverberation chamber reveals both the potential and limi-
tations of current technologies for real-time audio stream-
ing over mobile networks. While WebRTC provided a
foundational solution, its implementation exposed signif-
icant challenges, including network compatibility issues,
and hardware/software ecosystem limitations, and debug-
ging complexity. These challenges highlight the need for
more robust, transparent, and well-documented tools to
support real-time audio applications. Looking ahead, the
development of standardized debugging tools and more
comprehensive documentation for WebRTC and related
technologies will be critical for advancing real-time audio
streaming applications. This project serves as a case study
in the complexities of web audio technologies and offers
valuable insights for future research and development.

9 ACKNOWLEDGMENTS

Information Retrieval in Embedded Systems for Audio-
visual Artistic Processes (IRESAP) is supported by The
Knowledge Foundation (KKS).

10 REFERENCES

[1] A. Franklin, D. Hedin, R. Lindell, and H. Frisk,
“Merging Places: A Real-Time Distributed Live Rever-
beration Chamber,” presented at the 2024 16th Interna-
tional Conference on Quality of Multimedia Experience
(QoMEX), pp. 54–57 (2024 Jun.).

[2] S. Loreto and S. Romano, Real-Time Communica-
tion with WebRTC (O’Reilly Media, Inc., 2014 May),
URL https://www.oreilly.com/library/
view/real-time-communication-with/
9781449371869/, iSBN: 9781449371876.

8 Submitted to J. Audio Eng. Soc., 2025 April

https://www.oreilly.com/library/view/real-time-communication-with/9781449371869/
https://www.oreilly.com/library/view/real-time-communication-with/9781449371869/
https://www.oreilly.com/library/view/real-time-communication-with/9781449371869/


DRAFT Development of a Web-Based Real-Time Distributed Reverberation Chamber for Live Concert Applications

[3] A. Boem, M. Tomasetti, and L. Turchet, “Har-
monizing the Musical Metaverse: unveiling needs,
tools, and challenges from experts’ point of view,” pp.
206–214 (2024 Sep.), doi:10.5281/zenodo.13904834,
URL http://nime.org/proceedings/2024/
nime2024_33.pdf.

[4] R. A.Stebbins, Exploratory Research in the
Social Sciences, vol. 48 (SAGE Publications,
Inc., 2001), doi:10.4135/9781412984249, URL
https://methods.sagepub.com/book/mono/
exploratory-research-in-the-social-sciences/
toc.

[5] L. Candy, “Practice Based Research: A Guide,”
Tech. Rep. V1.0, Creativity & Cognition Studios (2006
Nov.).

[6] S. Scrivener, “The art object does not embody a
form of knowledge,” Working Papers in Art and De-
sign, vol. 2 (2002), URL https://www.herts.ac.
uk/__data/assets/pdf_file/0008/12311/
WPIAAD_vol2_scrivener.pdf, iSSN: 1466-4917.

[7] “Jack Trip,” (2024 Feb.), URL https://www.
jacktrip.com/.

[8] “SonoBus,” (2024 Feb.), URL https://
sonobus.net/.

[9] K. Wierenga, S. Winter, and T. Wolniewicz, “The
eduroam Architecture for Network Roaming,” Request
for Comments RFC 7593, Internet Engineering Task
Force (2015 Sep.), doi:10.17487/RFC7593, URL https:
//datatracker.ietf.org/doc/rfc7593, num
Pages: 37.

[10] “REAPER | Audio Production Without Limits,”
URL https://www.reaper.fm/.

[11] “Logic Pro for Mac,” URL https://www.
apple.com/logic-pro/.

[12] “Audio Unit Properties,” URL https:
//developer.apple.com/documentation/
audiotoolbox/audio-unit-properties#
InputOutput.

[13] “Bonjour,” URL https://developer.
apple.com/bonjour/.

[14] Y. Amo, G. Zissu, S. Eloul, E. Shlomi, D. Schukin,
and A. Kalifa, “A Max/MSP Approach for Incorporating
Digital Music via Laptops in Live Performances of Music
Bands,” presented at the Proceedings of the International
Conference on New Interfaces for Musical Expression, pp.
94–97 (2014 Jun.).

[15] Institut für Elektronische Musik und Akustik
(IEM), “Alternatives to VRR,” https://vrr.iem.
at/docs/alternatives/ (2003).

[16] W. Ritsch, “Towards a message based audio sys-
tem,” Proceedings of the LAC, vol. 2014 (2014 May).

[17] H. Wallach, E. B. Newman, and M. R. Rosen-
zweig, “A precedence effect in sound localization,” The
Journal of the Acoustical Society of America, vol. 21, no.
4 Supplement, pp. 468–468 (1949 Jul.).

[18] “Express - Node.js web application framework,”
URL https://expressjs.com/.

[19] “Node.js — Run JavaScript Everywhere,” URL
https://nodejs.org/en.

[20] “PeerJS - Simple peer-to-peer with WebRTC,”
URL https://peerjs.com/.

[21] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer
communication across network address translators.” pre-
sented at the USENIX Annual Technical Conference, Gen-
eral Track, pp. 179–192 (2005 Dec.).

[22] O. Kanaris and J. Pouwelse, “Mass Adoption of
NATs: Survey and experiments on carrier-grade NATs,”
arXiv preprint arXiv:2311.04658 (2023 Nov.).

[23] H. Schulzrinne, S. Casner, R. Frederick, and V. Ja-
cobson, “RFC 3550: RTP: A transport protocol for real-
time applications,” (2003 Jul.).

[24] R. Stewart, M. Tüxen, and K. Nielsen, “RFC 9260:
Stream Control Transmission Protocol,” (2022 Sep.).

[25] J.-M. Valin, K. Vos, and T. Terriberry, “RFC 6716:
Definition of the Opus audio codec,” (2012 Sep.).

[26] “Web Audio API 1.1,” URL https://www.w3.
org/TR/webaudio-1.1/.

[27] A. C. Begen, P. Kyzivat, C. Perkins, and M. J. Han-
dley, “SDP: Session Description Protocol,” Request for
Comments RFC 8866, Internet Engineering Task Force
(2021 Jan.), doi:10.17487/RFC8866, URL https://
datatracker.ietf.org/doc/rfc8866.

[28] M. Blochberger, J. Rieck, C. Burkert, T. Mueller,
and H. Federrath, “State of the sandbox: Investigating ma-
cOS application security,” presented at the Proceedings of
the 18th ACM Workshop on Privacy in the Electronic Soci-
ety, pp. 150–161 (2019 Nov.).

[29] WebKit Bug Tracker, “Web Audio Sounds Ceasing
After Safari Loses Focus (Bug 276016),” (2024), URL
https://bugs.webkit.org/show_bug.cgi?
id=276016, accessed: 2025-02-26.

[30] Mozilla Developer Network, “AudioWorkletN-
ode - Web APIs — MDN,” (2024), URL https:
//developer.mozilla.org/en-US/docs/
Web/API/AudioWorkletNode.

[31] C. Jennings, F. Castelli, H. Boström, and J.-
I. Bruaroey, “WebRTC: Real-Time Communication
in Browsers,” URL https://w3c.github.io/
webrtc-pc/.

[32] K. Pugin, A. Frindell, J. Cenzano, and J. Weissman,
“RUSH - Reliable (unreliable) streaming protocol,” Inter-
net Draft draft-kpugin-rush-00, Internet Engineering Task
Force (2021 Jul.), URL https://datatracker.
ietf.org/doc/draft-kpugin-rush-00, num
Pages: 16.

[33] J. Iyengar and M. Thomson, “QUIC: A UDP-
Based Multiplexed and Secure Transport,” Request for
Comments RFC 9000, Internet Engineering Task Force
(2021 May), doi:10.17487/RFC9000, URL https:
//datatracker.ietf.org/doc/rfc9000, num
Pages: 151.

Submitted to J. Audio Eng. Soc., 2025 April 9

http://nime.org/proceedings/2024/nime2024_33.pdf
http://nime.org/proceedings/2024/nime2024_33.pdf
https://methods.sagepub.com/book/mono/exploratory-research-in-the-social-sciences/toc
https://methods.sagepub.com/book/mono/exploratory-research-in-the-social-sciences/toc
https://methods.sagepub.com/book/mono/exploratory-research-in-the-social-sciences/toc
https://www.herts.ac.uk/__data/assets/pdf_file/0008/12311/WPIAAD_vol2_scrivener.pdf
https://www.herts.ac.uk/__data/assets/pdf_file/0008/12311/WPIAAD_vol2_scrivener.pdf
https://www.herts.ac.uk/__data/assets/pdf_file/0008/12311/WPIAAD_vol2_scrivener.pdf
https://www.jacktrip.com/
https://www.jacktrip.com/
https://sonobus.net/
https://sonobus.net/
https://datatracker.ietf.org/doc/rfc7593
https://datatracker.ietf.org/doc/rfc7593
https://www.reaper.fm/
https://www.apple.com/logic-pro/
https://www.apple.com/logic-pro/
https://developer.apple.com/documentation/audiotoolbox/audio-unit-properties#InputOutput
https://developer.apple.com/documentation/audiotoolbox/audio-unit-properties#InputOutput
https://developer.apple.com/documentation/audiotoolbox/audio-unit-properties#InputOutput
https://developer.apple.com/documentation/audiotoolbox/audio-unit-properties#InputOutput
https://developer.apple.com/bonjour/
https://developer.apple.com/bonjour/
https://vrr.iem.at/docs/alternatives/
https://vrr.iem.at/docs/alternatives/
https://expressjs.com/
https://nodejs.org/en
https://peerjs.com/
https://www.w3.org/TR/webaudio-1.1/
https://www.w3.org/TR/webaudio-1.1/
https://datatracker.ietf.org/doc/rfc8866
https://datatracker.ietf.org/doc/rfc8866
https://bugs.webkit.org/show_bug.cgi?id=276016
https://bugs.webkit.org/show_bug.cgi?id=276016
https://developer.mozilla.org/en-US/docs/Web/API/AudioWorkletNode
https://developer.mozilla.org/en-US/docs/Web/API/AudioWorkletNode
https://developer.mozilla.org/en-US/docs/Web/API/AudioWorkletNode
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-pc/
https://datatracker.ietf.org/doc/draft-kpugin-rush-00
https://datatracker.ietf.org/doc/draft-kpugin-rush-00
https://datatracker.ietf.org/doc/rfc9000
https://datatracker.ietf.org/doc/rfc9000


FRANKLIN ET AL. DRAFT

THE AUTHORS

Austin franklin Richard Mitic Daniel Hedin Rikard Lindell

Henrik Frisk

Austin Franklin is a composer and researcher at
Mälardalen University and the Royal College of Music
in Stockholm, working with information retrieval, em-
bedded systems, and artistic processes. He maintains a
real-time timbral analysis library for Cycling ’74 Max. His
music has been performed at Carnegie Hall and received
awards including the American Prize and the Petrichor
International Music Competition.r

Richard Mitic is a PhD candidate at Mälardalen Uni-
versity, researching spatial audio, digital signal process-
ing, and large-scale music information retrieval. He holds
a master’s in Music and Electronics from the University
of Glasgow and has extensive industry experience–from
working with media streaming protocols and MPEG stan-
dardization to software for music streaming.r

Daniel Hedin is a senior lecturer in computer science at
Mälardalen University and a guest researcher at Chalmers
University of Technology, specializing in language-based
security. His research covers secure information flow, data

minimization, and formal verification, with a recent focus
on securing untrusted code and web applications. He is
the principal designer of several practical tools, including
JavaScript sandboxes and security-enhanced interpreters.r

Rikard Lindell is a composer and professor at
Mälardalen University (computer science, interaction
design) and Dalarna University (audiovisual studies).
His artistic work includes interactive installations, elec-
troacoustic and orchestral compositions, and phonogram
releases. In research, he explores code as design material
and contributes to the NIME community. He has developed
commercial audiovisual performance apps for iOS.r

Henrik Frisk is a composer and performer of contempo-
rary music. He is a professor of composition at the Royal
College of Music in Stockholm, where he teaches elec-
troacoustic music. His research focuses on improvisation,
interactivity, spatialisation, and experimental music, with
current projects exploring spatial perception and multidis-
ciplinary approaches to electronic music heritage.

10 Submitted to J. Audio Eng. Soc., 2025 April


